National 5 Chemistry

Self-Evaluation

Name:	
Class:	Teacher:

Not to be shared without permission of the copyright holder

			National E	Chomistry			и	Tra	ffic Li	ight
B	chem	Unit	1.2a Periodic	Table and A	toms	chem	Lesso	Red	Amber	Green
6 7	The elements Metal Group electr	s of the Periodi elements are o ps (columns) o rons, indicated	c Table are arranged on the left side and r n the Periodic Table by the group numbe	l in order of increas non-metals elements contain elements w er on the Periodic Ta	ing atomic nu s are found on vith same num able	mber: the right sid ber of outer	e	3	:	:
8	Elements wi properties a Grou Va	ithin the same is they have th p Number 1 alency 1	e group have the same number of 1 2 3 1 2 3	ame valency and h f electrons in their 4 5 4 3	ave similar c outer electro 6 7 2 1	hemical on shell. 0		\odot	:	3
9	The electron 1 st Energy Le 2 electr Electrons Arran	arrangement ofvel holds2ndonsgements of the first	f the first 20 element Energy Level holds 8 electrons st 20 elements are found	tts can be written. 3 rd Energy Level holds 8 electrons on page 6 of the data be	4 th Energy 8 elec	Level holds ctrons		3	:	:
10	Every eleme particles cal • each prot • elect of th	ent is made up led atoms. a atom has a nu cons and neutro trons move arc ae nucleus.	of very small cleus contains F ons ound the outside	proton neutron		 electron shell (energy level) electron nucleus (positively charged) 		3	:	0
11			3	:	\odot					
		ro								
12	The atomic r		$\overline{\mbox{\scriptsize (s)}}$		\odot					
13	The mass nu	mber of an ato	om is equal to the nu	mber of protons plu	is neutrons			$\overline{\mathbf{i}}$	\bigcirc	\odot
14	Isotopes are a o the so o the so Most element	atoms of the sa <i>ume</i> atomic nur <i>ume</i> number of ts have more th	me element which h nber but a <i>different</i> protons but a <i>differe</i> nan one isotope and	nave: mass numbers ent number of neutr an element is a mixtu	rons ure of the diffe	rent isotopes		3	:	: :
15a	The number Number of Number of Number of	and mass no		0:	(:)	0				
15b	The number Number of Number of Number of		\odot	:	\odot					
16	Relative aton o RAM e.g. The RAM <u>As RAM is clo</u>	nic mass is the is rarely a who of Chlorine is 3 oser to <u>35 tha</u> n	average atomic mas le number because i 35.5 (The two chlori <u>37 there must be</u> m	s of all the isotopes it an average of diffe ne isotopes are ³⁵ Cl <u>ore ³⁵Cl atoms in</u> san	of an element erent masses and ³⁷ Cl) <u>mple than ³⁷C</u> l	atoms		\odot	:	٢

1 1 1

			National 5	Chomistry			1	u	Tra	ffic L	ight		
	chem		Unit 1 2h Cov	alent Ronding		chem		esso	Red	mber	Green		
	A covalent her	dforma	when two nositivo nuclo	i are held together by th	oir comm	on attractiv	· ·	-		A	0		
17	for a shared pa	air of elec	trons.	i al e llelu togetilel by ti		on attractio)11		$\overline{\mathbf{i}}$	\bigcirc	\odot		
18	Covale	nt bonds	form between non-meta	al atoms.					-	Ŭ			
	Outer electron	s can be s	shared to form the coval	ent bond(s) in a molecu	le.								
	• More t bonds.	nan one i	ond can be formed betv	veen atoms leading to d	ouble & tr	iple covalei	ıt						
	Hydrogen mo	lecule H ₂	Hydrogen molecule Cl ₂	Oxygen molecule O ₂	Nitrogen	molecule	\mathbf{V}_2						
19				F [#] 09		X			\odot	\odot	\odot		
22	(н	н) o () o ((X N	$\overline{\otimes} N^{-}$	\sim		Q	Θ	0		
						$\overline{\vee}$							
			····			×							
	Н—	H	Cl - Cl	0 = 0	N	$\equiv N$							
20	7 elements exi	st as diat	omic molecules through	the formation of covale	nt bonds:				(\mathbf{i})	\odot	\odot		
20	Diato	mic El	ements H ₂ N	2 02 F2 CI	$_2$ Br ₂	l ₂			\bigcirc	\bigcirc	•		
	The shape of s	orientatio	1										
	• The sh	nidal or											
	tetrahe												
	Hydrogen ch	loride	Water	Ammonia	М	lethane							
	HC HC	CH_4											
21	6	H			\odot	☺	\odot						
		Yoy _											
	(н 🖉 🕻	\mathbf{x}		HO IN PH	(н)	[С]							
			text	(ex)		Jox -							
	7	9	(H)	н		(H)							
	linear	ſ	angular	trigonal pyramidal	tetr	rahedral			-				
23	Covalent subs	tances ca	n form either discrete m	olecular or giant netwo	rk structui	res			\odot	\bigcirc	\odot		
	Covalent mole	cular sub	stances:	malagulag and only	~ ~	~ ~ ~ ~							
	• nave weak	attractio	ns between the molecule	es)						
24	• have	low melti	ng and boiling points as	only weak forces of	00	000	p		$\overline{\mathbf{i}}$	\odot	\odot		
21	attrac	ction betv	veen the molecules are b	oroken when a			\cap		\bigcirc	\bigcirc	•		
	• do no	t conduct	t electricity because they	v do not have charged	ٽ ف		5						
	partic	cles which	n are free to move										
25	Covalent mole	cular sub	stances which are insolu	ıble in water may dissol	ve in othe	r solvents.			\odot	\bigcirc	\odot		
	Covalent netw	ork struc	tures:	da within and signt		0							
	• nave	ture	k of strong covalent bon	us within one giant	¢-	4							
26	• have	very high	melting and boiling poi	nts because the	-				$\overline{\mbox{\scriptsize ($)}}$	\bigcirc	\odot		
	netwo	ork of str	ong covalent bonds is no	ot easily broken	0	Loffo							
	• uo no				0-8	-							
27	In general, cov	alent net	work substances do not	conduct electricity. This	s is becaus	e they do n	ot		$\overline{\mathfrak{S}}$	\odot	\odot		
	nave charged	particles	general, covalent network substances do not conduct electricity. This is because the ve charged particles which are free to move.										

			IAB		on	Tra	ffic L	ight				
		chem		Unit 1.2c l	onic Bonding		chem		Less	Red	Amber	Green
28	lons	are formed	when	atoms lose or gain ele	ctrons to obtain the sta	ble electron a	rrangemen	t		$\overline{\mathbf{i}}$	\odot	\odot
29 30	In ge	neral: Metal to Na ⁻ 2,8,1	atoms form p	s lose electrons positive ions Na ⁺ + e ⁻ _{2,8}	Non-metal a to form Cl + e ⁻ 2,8,7	toms gain elec n negative ions C 2,	ctrons s 2]- 8,8			\odot	:	©
31	Ionic	bonds are	the ele	ectrostatic attraction b	etween positive and ne	gative ions.				$\overline{\mbox{\scriptsize ($)}}$	\bigcirc	\odot
32				Ionic compounds form with each positive ion ion surrounded by po	n lattice structures of o n surrounded by negati ositive ions.	oppositely cha ve ions and ea	rged ions ach negative	2		8	:	0
33	Ionic brok	compound en in order	ls have to bre	high melting and boili ak up the lattice.	ng points because stro	ng ionic bond	s must be			$\overline{\mathbf{O}}$		\odot
34	Many allow	v ionic com ving water 1	pound nolecı	s are soluble in water. iles to surround the se	As they dissolve the lat parated ions.	tice structure	breaks up			$\overline{\mbox{\scriptsize (s)}}$		\odot
35	Ionic breal	compound s up allow	ls conc ing the	luct electricity only wh e ions to be free to mov	en molten or in solutio ve.	on as the lattic	e structure			$\overline{\mbox{\scriptsize ($)}}$:	\odot
36	Cond charg	uction in ic ged electro	onic co des.	mpounds can be expla	ined by the movement	of ions toward	ds opposite	ly		$\overline{\mbox{\scriptsize (s)}}$		\odot
		Type of Bor Metall (Metals only Covale (Non-metals o Ionic (Metals + Non-m	nding ic y) ent nly) c hetals)	Conduction as a Solid × ×	Conduction as a Liquid	Conduction as a metals do dissolve in v	a Solution not water					

Chem Unit 1.3a Chemical Formulae Chem Si R			National 5	Chemistry	IAR	on	Tra	ffic L	ight
Compound names are derived from the names of the elements from which they are formed. 37 Ending Meaning Example 37 Ending I compound Copper sulphice = copper + sulphur example 38 I clements in compound + oxygen Copper sulphice = copper + sulphur + oxygen example Chemical formula can be written for two element compounds using valency rules and a Periodic Table. • The valency of an element is worked out from the group number: • 38 Chemical formula can be written for two element compounds worked out by the cross-over rule: • • The drama value or in the group number: • 38 • The drama value or input 2-element compound is worked out by the cross-over rule: Si Q Q 4 • Si Q Q 39 • • Name of a compound indicate the valency of an element. Si Q Q 4 • Si Q Q 40 • • • • • Name of a compound indicate the valency of an element. • <td>H</td> <td>chem</td> <td>Unit 1.3a Chei</td> <td>nical Formulae</td> <td>e chem</td> <td>Less</td> <td>Red</td> <td>Amber</td> <td>Green</td>	H	chem	Unit 1.3a Chei	nical Formulae	e chem	Less	Red	Amber	Green
Image: constraint of the constr		Compound names are de	erived from the names	of the elements from v	which they are formed.				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Ending	Meaning	Exa	ample		_	_	
$\begin{array}{ c c c c c } \hline -ate & 2 elements in compound + oxygen & Copper subhate = copper + subhur + oxygen \\ \hline $	37	-ide 2 elements in	compound	Copper sulphide = cop	per + sulphur		$\overline{\mbox{\sc o}}$	\bigcirc	\odot
$\frac{1}{10} \frac{1}{10} \frac$		-ate 2 elements in	compound + oxygen	Copper sulphate = cop	per + sulphur + oxygen				
$\begin{array}{c c} Chemical formulae can be written for two element compounds using valency rules and a Periodic Table. $		-ite 2 elements in	compound + oxygen	Sodium sulphite = sod	ium + sulphur + oxygen	<u> </u>			
Periodic Table.• The valency of an element is worked out from the group number: Tree or Number 1 2 3 4 4 5 6 7 0 Valency 1 2 3 4 4 5 6 7 0 Valency 1 2 3 4 4 5 6 7 0 Valency 1 2 3 4 4 5 6 7 0 Valency 1 2 3 4 4 5 6 7 0 Valency 1 2 3 4 4 5 6 7 0 Valency 1 2 3 4 4 5 6 7 0 Valency 1 0 costs over rule: Si 0 Si 0 Si 0 Si 0 Si 0 4 4 SiO2 Si 0 4 2 4 2 SiO2 Si 0 Si 0 Si Si 0 Si 0 Si 0 Si 0 Si Si 0 Si 0 Si 0 Si Si 0 Si 0 Si Si 0 Si Si 0 Si Si 0 Si Si 0 S		Chemical formulae can b	e written for two elen	nent compounds using	valency rules and a				
Internation of a compound number 111234567038The formula of a simple 2-element compound is worked out by the cross-over rule:Write downWrite downSi< O		• The valency of an el	ement is worked out from t	he group number.					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		G	coup Number12	3 4 5 6 7	0				
38 Interformula of a simple 2-certenent compound is worked out y the cross-over Provise of the own valency below each element's symbol Part in accessary to get formula 38 Si O Si O<		The formula of a sim	Valency 1 2						
38 element symbols each element's symbol Cross-over Arrows necessary to get formula 39 Si O Si O Si O Si O Si O 39 Roman numerals in the name of a compound indicate the valency of an element. Image: Compound		I ne formula of a sim Write down	Write down Valency belo	worked out by the cross-ov	Follow arrows and cancel down if	1			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	38	element symbols	each element's symbo	l Cross-over Arrows	necessary to get formula		8	Θ	\odot
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Si O	Si O	Si O	Si ₂ O ₄				
4 2 4 2 Si02 39 Roman numerals in the name of a compound indicate the valency of an element. Si02 39 Roman Numeral 1 11 11 11 V VI VII The cross over rule is followed as usual once the valency of the metal has been worked out from the roman numeral Image: Compound (arbon monoxide (arbon dioxide) (arbon the refixes. Image: Compound (arbon monoxide) (arbon dioxide) (arbon the refixes. Image: Compound (arbon monoxide) (arbon dioxide) (arbon the refixed) (ar									
4 2 4 2 SiO2 39 Roman numerals in the name of a compound indicate the valency of an element. Image: Compound indicate the valency of an element. Image: Compound indicate the valency of the metal has been worked out from the roman numeral interaction in the substance due to the metal has been worked out from the roman numeral interaction interaction in the substance interaction interaction in the romula can also be determined from names with prefixes. Image: Compound interaction interactint interactinteration int					+				
39 Roman numerals in the name of a compound indicate the valency of an element. 39 Roman Numeral 1 11 </td <td></td> <td></td> <td>4 2</td> <td>42</td> <td>SiO₂</td> <td></td> <td></td> <td></td> <td></td>			4 2	42	SiO ₂				
Roman numerals in the name or a compound indicate the valency of an element.39Roman Numeral1111111VVIVIValency1234567The cross over rule is followed as usual once the valency of the metal has been worked out from the roman numeralThe cross over rule is followed as usual once the valency of the metal has been worked out from the roman numeralThe cross over rule is followed as usual once the valency of the metal has been worked out from the roman numeralThe cross over rule is followed as usual once the valency of the metal has been worked out from the roman numeralThe cross over rule is followed as usual once the valency of the metal has been worked out from the roman numeralThe cross over rule is followed as usual once the valency of the metal has been worked out from the roman numeralThe cross over rule is followed as usual once the valency of a carbon dioxideSubstance.Compound formula of a covalent molecular substance gives the number of each type of atom in the substance.* The orbunal of a covalent network gives the simplest ratio of each type of atom in the substance.* The valency of a group ion can be worked out from the charge of the ion• The valency of a group ion can be worked out from the charge of the ion• The valency of a group ion can be worked out from the charge of the ion• The valency of a group ion can be worked out from the charge of the ion• The		Describe to the		<u> </u>					
39 Image: Anomal interval in the interval in the interval interv		Roman numerals in the	in element.						
The cross over rule is followed as usual once the valency of the metal has been worked out from the roman numeral The cross over rule is followed as usual once the valency of the metal has been worked out from the roman numeral 40	39	Kom			\odot	(\Box)	\odot		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		The cross over rule is followe	d as usual once the valency	of the metal has been work	ed out from the roman numeral				
40 Compound carbon monoxide carbon dioxide sulphur trioxide carbon tetrachloride Formula CO CO2 SO3 CCl4 41 Formula CO CO2 SO3 CCl4 CO CO 41 Meaning Mono = 1 Di = 2 Tri = 3 Tetra = 4 CO CO 41 The chemical formula of a covalent molecular substance gives the number of each type of atom present in a molecule. The formula of a covalent network gives the simplest ratio of each type of atom in the substance. Compound carbon with the substance CO CO 42 Ions containing more than one type of atom are often referred to as group ions. CE CE Chemical formulae can be written for compounds containing group ions. CE CE Chemical formulae can be written for compounds containing group ions. CE CE Chemical formulae can be written for compounds containing group ions. CE CE CE Chemical formulae can be written for compounds containing group ions. CE CE CE CE Chemical formulae can be written for compounds containing group ions. CE CE<		The chemical formula ca	n also be determined	from names with prefix	Kes.				
Image: Normula in the substance in the substance in a molecule. Image: Normula of a covalent molecular substance gives the number of each type of atom present in a molecule. Image: Normula of a covalent molecular substance gives the number of each type of atom present in a molecule. Image: Normula of a covalent network gives the simplest ratio of each type of atom in the substance. 41 The chemical formula of a covalent network gives the simplest ratio of each type of atom in the substance. Image: Normula of a covalent network gives the simplest ratio of each type of atom in the substance. 42 Ions containing more than one type of atom are often referred to as group ions. Image: Normula of a group ion can be worked out from the charge of the ion Image: Normula of a covalent network gives the simplest ratio of the ion of the ion substance and cancel down if element symbols Image: Normula of a covalent network gives the simplest ratio of each type of the ion in the substance and can show the charges on each ion, if required. 43 Ionic formulae give the simplest ratio of each type of ion in the substance and can show the charges must be subscript Image: Nork out the ion in the substance and can show the charges on each ion, if required. 444 444 Work out the formula of the metal inon-metal/group ion on of the ion to get ion to get onic formula Image: Nork out the ion in the substance on of that ion to get ion ion tormula	40	Compound car	bon mono xide carbon di	oxide sulphur tri oxide	carbon tetra chloride		(\mathbf{x})	\odot	\odot
Meaning Mono = 1 Di = 2 Tri = 3 Tetra = 4 41 The chemical formula of a covalent molecular substance gives the number of each type of atom present in a molecule. • The formula of a covalent network gives the simplest ratio of each type of atom in the substance. • The formula of a covalent network gives the simplest ratio of each type of atom in the substance. 42 Ions containing more than one type of atom are often referred to as group ions. • The valency of a group ion can be worked out from the charge of the ion • The valency of a group ion can be worked out from the charge of the ion 43 Write down element's symbol Write down Valency below each element's symbol Put in Cross-over Arrows Follow arrows and cancel down if necessary to get formula 43 Al SO4 ²⁻ Al SO4 ²⁻ Al SO4 ²⁻ Al SO4 ²⁻ Al SO4 ² 44 Onic formulae give the simplest ratio of each type of ion in the substance and can show the charges on each ion, if required. • charges must be superscript and numbers of atoms/ions must be subscript (a)	10	Formula		SU ₃				\cup	•
41 The chemical formula of a covalent molecular substance gives the number of each type of atom present in a molecule. • The formula of a covalent network gives the simplest ratio of each type of atom in the substance. 41 • The formula of a covalent network gives the simplest ratio of each type of atom in the substance. (a) 42 Ions containing more than one type of atom are often referred to as group ions. (a) (a) 42 Ions containing more than one type of atom are often referred to as group ions. (a) (a) • The valency of a group ion can be worked out from the charge of the ion (b) (c) • The valency of a group ion can be worked out from the charge of the ion (c) (c) • Write down (c) (c) (c) (c) 43 Al SO4 ²⁻ Al SO4 ²⁻ Al SO4 ²⁻ Al SO4 ²⁻ 43 (a) (a) (a) (c) (c) 44 (c) (c) (c) (c) (c) 44 (c) (c) (c) (c) (c) (c) 44 (c) (c) (c) (c) (c) (c) (c) 44 (c) (c) (c) (c) </td <td></td> <td>Meaning</td> <td>$Mono = 1 \qquad Di = 2$</td> <td>2 In = 3</td> <td>Tetra = 4</td> <td></td> <td></td> <td></td> <td></td>		Meaning	$Mono = 1 \qquad Di = 2$	2 In = 3	Tetra = 4				
 41 present in a indicetule. • The formula of a covalent network gives the simplest ratio of each type of atom in the substance. (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c		The chemical formula of	a covalent molecular	substance gives the nur	mber of each type of atom				
42 Ions containing more than one type of atom are often referred to as group ions. (a) 42 Ions containing more than one type of atom are often referred to as group ions. (b) • The valency of a group ion can be worked out from the charge of the ion (c) (c) • The valency of a group ion can be worked out from the charge of the ion (c) (c) • Write down (c) (c) (c) • element symbols (c) (c) (c) 43 (c) (c) (c) (c) 44 (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (41	• The formula of a	covalent network give	as the simplest ratio of	each twpe of atom in the		$\overline{\mbox{\scriptsize ($)}}$	\odot	\odot
42 Ions containing more than one type of atom are often referred to as group ions. (a) 42 Ions containing more than one type of atom are often referred to as group ions. (b) Chemical formulae can be written for compounds containing group ions (c) (c) • The valency of a group ion can be worked out from the charge of the ion (c) (c) Write down (c) (c) (c) (c) (c) (c) (c)		substance.	covarent network give						
43 Chemical formulae can be written for compounds containing group ions • The valency of a group ion can be worked out from the charge of the ion Write down element symbols Al SO4 ²⁻	42	Ions containing more th	an one type of atom ar	e often referred to as g	roup ions.		$(\dot{\sim})$	(\odot
 The valency of a group ion can be worked out from the charge of the ion Write down element's symbol Al SO₄²⁻ Al SO₄²⁻<		Chemical formulae can b	e written for compou	nds containing group ic	ons)	<u> </u>
43 Write down element symbols Write down Valency below each element's symbol Put in Cross-over Arrows A1 SO4 ²⁻ A1 SO4 ²⁻ A1 SO4 ²⁻ A1 SO4 ²⁻ 3 2 3 2 A1 SO4 ²⁻ A12(SO4)3 Eine Constrained and the charges on each ion, if required. Eine Constrained and the charges must be superscript and numbers of atoms/ions must be subscript Eine Constrained and the charges in the constrained and the charges on each ion, if required. Eine Constrained and the constrained and the charges must be superscript and numbers of atoms/ions must be subscript Eine Constrained and the const		• The valency of a	group ion can be worl	ked out from the charge	e of the ion				
43 Al SO ₄ ²⁻ Al SO ₄		Write down	Write down Valency belo	ow Put in	Follow arrows and cancel down if				
43 AI SO4 ²⁻			necessary to get formula			~	~		
44 44 Work out the formula of the substance Work out the ion of the formed by the metal Work out the ion of the formula of the substance Work out the ion of the formula of the substance Work out the ion of the formula of the substance Work out the ion of the formula of the substance Work out the ion of the formula of the substance Work out the ion of the formula of the substance Work out the ion of the formula of the substance Work out the ion of the formula of the substance Work out the ion of the formula of the substance Work out the ion of the formula of the formed by the metal Work out the ion of the formula of the formed by the metal Work out the ion of the formula of the formed by the metal Work out the ion of the formula of the formula Work out the ion of the formula of the formed by the metal Work out the ion in brackets if there is more than one of that ion to get ionic formula	43	AI SU4 ²⁵	$AI SU_4^2$	$AI SO_4^2$			\odot	\ominus	\odot
44 44 • charges must be superscript and numbers of atoms/ions must be subscript 44 Work out the formula of the substance Work out the ion of the formula of the substance 8 Work out the formula of the substance Work out the ion of the formula of the substance 9 Work out the formula of the substance Work out the ion of the formula of the substance 9 Work out the ion of the substance Work out the ion of the formula of the substance 9 Work out the ion of the substance Work out the ion of the formula of the substance 9 Work out the ion of the substance Work out the ion of the formula of the substance 9 Work out the ion of the substance Work out the ion of the formula of the substance					$ A _2(SO_4)_3$				
44 44 • charges must be superscript and numbers of atoms/ions must be subscript 44 • work out the formula of the substance Work out the ion of the formed by the metal Work out the formula of the substance Work out the ion of the formed by the metal Put the ion in brackets if there is more than one of that ion to get ionic formula									
44 Ionic formulae give the simplest ratio of each type of ion in the substance and can show the charges on each ion, if required. 44 • charges must be superscript and numbers of atoms/ions must be subscript 45 Work out the formula of the substance 9 Work out the formula of the substance 9 Work out the ion of the formed by the metal 9 Work out the ion of the substance			3 2	32					
 charges on each ion, if required. charges must be superscript and numbers of atoms/ions must be subscript Work out the formula of the substance Work out the ion of the formed by the metal non-metal/group ion 		Ionic formulae give the s	simplest ratio of each t	ype of ion in the substa	ance and can show the	1			
44 45• charges must be superscript and numbers of atoms/ions must be subscript44 45Work out the formula of the substanceWork out the ion formed by the metalWork out the ion of the non-metal/group ionPut the ion in brackets if there is more than one of that ion to get ionic formulaImage: Comparison of the Comparison of the Comparison of the Comparison of the the ion in the comparison of the one of that ion to get ionic formulaImage: Comparison of the Comparison of the Comparison of the Comparison of the the ion of th		charges on each ion, if re	equired.						
45 Work out the formula of the substance Work out the ion of the formed by the metal Work out the ion of the non-metal/group ion Put the ion in brackets if there is more than one of that ion to get ionic formula	44	charges must be	superscript and numb	ers of atoms/ions mus	t be subscript	1			
	45	Work out the formula of the substance	n in brackets if there is more than f that ion to get ionic formula		Ö	\ominus	\odot		
		$Al_2(SO_4)_3$	A] ³⁺	SO_4^{2-} (A)	$(SO_4^{2-})_3$				

	National 5 Chamictry	n	Tra	ffic L	ight
	^{chem} Unit 1.3b Mole Calculations & Balanced Equations	Lesso	Red	Amber	Green
46	$\begin{array}{c} \text{Chemical equations, using formulae and state symbols, can be written and balanced.} \\ \hline \text{Write down correct chemical formula of all reactants before the arrow and all products after the arrow.} \\ \hline \text{Na}_{(\text{s})} + \text{O}_{2(\text{g})} \rightarrow \text{Na}_{2}\text{O}_{(\text{s})} \\ \hline \text{There are 2 oxygen atoms on left hand side but only 1 oxygen atom on right hand side. As the formula of Na_2O cannot be changed, double the number of Na_2O molecules by adding the number 2 in front of the formula \\ \hline \text{Na}_{(\text{s})} + \text{O}_{2(\text{g})} \rightarrow \text{2Na}_{2}\text{O}_{(\text{s})} \\ \hline \text{There is 1 sodium atom on the LHS but 4 sodium atoms on the RHS. As the formulae of Na and Na_2O are set and cannot be changed, we must add the number 4 in front of the Na on the LHS to balance the number of Na atoms \\ \hline \text{4Na}_{(\text{s})} + \text{O}_{2(\text{g})} \rightarrow \text{2Na}_{2}\text{O}_{(\text{s})} \\ \hline \end{array}$		8		0
47	The mass of a mole of any substance, in grams, is equal to the gram formula mass and can be calculated using relative atomic masses. e.g. calculate the gfm of glucose $C_6H_{12}O_6$. Write Number of each Relative Element atom from Atomic Mass Symbol formula (p7 data book) Total C 6 x 12 = 72 H 12 x 1 = 12 O 6 x 16 = 96 gfm = 180		3	:	☺
48a	Calculations can be performed using the relationship between the mass and the number of moles of a substance. $m = mass$ $n = no. of moles$ $GFM = gram formula mass$ $m = n \times gfm$ $n = \frac{m}{gfm}$ $gfm = \frac{m}{n}$				٢
48b	Changing number of moles \longrightarrow number of grams e.g. Calculate the number of moles in 3.6g of water. Calculate the gfm of H ₂ O H 2 x 1 = 2 O 1 x 16 = 16 gfm = 18g then $= \frac{3.6}{18}$ = 0.2mol		3		٢
48c	$\begin{array}{c} \text{Changing number of grams} \longrightarrow \text{number of moles} \\ \text{e.g. calculate the mass if 0.1 moles of CO}_2 \\ \text{Calculate the gfm of CO}_2 \\ \text{C} & 1 & x & 12 & = & 12 \\ \text{O} & 2 & x & 16 & = & 32 \\ \text{gfm} & = & 44g \end{array} \qquad \begin{array}{c} \text{mass = no. of mol x gfm} \\ = & 0.1 \text{ x 44} \\ = & 4.4g \end{array}$		(3)		3
49	A solution is formed when a solute is dissolved in a solvent. Name Definition solution a mixture formed when a solute dissolves in a solvent solute The substance that is dissolved solvent The liquid that does the dissolving		\odot		©
50	The number of moles of solute, volume of solution and concentration of solution can be calculated using the equation: $n = C \times V$ n = C or V n = C or V n = C or V n = C or V $n = V \times C$ $n = V \times C$ $C = \frac{mol}{V}$ $V = \frac{mol}{C}$				٢

	Giv the e.g.	ven a balan e mass or n calculate the	ced ec umbe mass o	quation of of n	on, the noles on diox	e mas of an side pr	ss or nur other su roduced if	nber bsta ^{5g of}	of mo nce in calcium	les of the re	a subs action. nate read	tance cts wit	can b _h	e cale	culated giv	en			
	gr	Ca	1	x	40	=	40		giiii (1	x	12	=	12				
		C	1	X	12	=	12			Ő	2	X	16	=	32				
51		0	3	х	16	=	46						σfm	_	44σ		(\mathbf{i})	\odot	\odot
51					gfm	=	100g						giiii	_	ттg		0	0	
	n	$=\frac{m}{gfm}=\frac{1}{1}$	$\frac{5}{00} = 0$	0.05mo	ol	CaCC 1mol 0.05m	93 + 2HCl 2mo ol	\rightarrow (CaCl ₂ + 1mol	H ₂ O - 1mol	⊦ CO2 1mol 0.05mol	n	n = = =	n 0.05 2.2g	x gfm X 44				
	Th	e percentag	ge con	nposi	ition c	of an	element	in ai	ny com	ipoun	d can b	e cal	culate	d fro	m the				
	for	mula of the	e com	poun	d.														
		Calcula	ate mas	ss of 1	mole		Find ma	ss of (element	;	Percen	tage Fe	e in Fe ₂	O ₃ cal	culation		-		
52		Fe ₂ O ₃ =	= (2x5 = 11	56) + 12 +	(3x16) 48)	2 x Fe	=	(2x56) 112g		<u>112</u> 160	2 <u>g</u>)g x	100	= 7	0%		\odot		\odot
		=	= 16	0g															

		National 5 Chemistry		uc	Tra	ffic L	ight
	chem	Unit 1.4a pH	chem	Lesso	Red	Amber	Green
53	The pH scale	e is a continuous range of numbers: 2 3 4 5 6 7 8 9 10 11 12 Acidic solutions	13 14 lutions		8	:	0
	the pit is p	H scale runs from 0 to 14 ossible to get pH values below 0 and above 14					
55 56	Water is neut disso At any The s	ral as it dissociates according to the equation: $H_2O_{(l)} \longrightarrow H^+_{(aq)} + 0$ ciation produces equal concentrations of hydrogen H ⁺ ions & hydrox <i>v</i> time, only a few water molecules are dissociated into free ions. <i>y</i> mbol \longrightarrow indicates that a reaction is reversible and occurs in both	OH ⁻ (aq) ide OH ⁻ ions. directions.		$\overline{\mbox{\scriptsize ($)}}$	(:)	\odot
54 57 58	The acidity, a <u>neu</u> <u>acidio</u> a pH <u>alkali</u> and h	alkalinity and neutral nature of a solution depends on H ⁺ and O <u>tral</u> solution has equal concentrations of H ⁺ (aq) and OH ⁻ (aq) ions c solutions have a higher concentration of H ⁺ (aq) ions than OH ⁻ (a below 7. <u>ne</u> solutions have a higher concentration of OH ⁻ (aq) ions than H ave a pH above 7.)H [−] ions. ^{aq)} and have H ⁺ (aq) ions	2	8	:	0
59 60	The pH of a a dilution the pl dilution and th	cidic/alkaline solution heads towards pH=7 when diluted with wate on of an acidic solution with water will decrease the concentration of 4 will increase towards 7. on of an alkaline solution with water will decrease the concentration ne pH will decrease towards 7.	r: if H ⁺ (aq) and n of OH [–] (aq)		$\overline{\mathbf{S}}$:	©
61	Soluble non-n	netal oxides dissolve in water forming acidic solutions e.g. CO_2 , NO_2 a	and SO ₂		$\overline{\mathbf{O}}$	(;)	\odot
62	Soluble <i>metal</i>	oxides dissolve in water to form alkaline solutions: metal oxide + water ──→ metal hydroxide			$\overline{\mathbf{O}}$	\odot	\odot
63	Metal oxides, only b all bas	netal hydroxides, metal carbonates & ammonia neutralise acids and are pases that dissolve in water form alkaline solutions ses neutralise acids and form water.	e called bases		$\overline{\mbox{\scriptsize (s)}}$:	\odot

	National 5 Chomistry	u	Tra	ffic L	ight
	JABNational S chemistryJABchemUnit 1.4b Neutralisation Reactionschem	Lesso	Red	Amber	Green
64	A neutralisation reaction is one in which a base reacts with an acid to form water. • A salt is also formed in this reaction		8		\odot
65a	Hydrogen ions in acids react with oxide ions in metal oxides to form water acid + metal oxide salt + water		$\overline{\ensuremath{\mathfrak{S}}}$		\odot
65b	Hydrogen ions in acids react with hydroxide ions in alkalis to form water. acid + metal hydroxide — salt + water		8	:	\odot
65c	$\begin{array}{c} \text{(alkali)} \\ \text{H}^{+} \text{ ions in acids react with carbonate ions in metal carbonates to form water and carbon dioxide.} \\ \text{acid} + \underbrace{\begin{array}{c} \text{metal} \\ \text{carbonate} \end{array}}_{\text{carbonate}} & \text{salt} & + & \text{water} & + & \begin{array}{c} \text{carbon} \\ \text{dioxide} \end{array} \end{array}$		$\overline{\mbox{\scriptsize (s)}}$		٢
66	Salts are formed in the reaction of acids with bases. • acids supply the 2 nd name of the salt: Name of Acid Hydrochloric acid Sulphuric Acid Nitric Acid 2 nd Name of Salt Chloride Sulphate Nitrate • sodium sulphate + water acid hydroxide		0		٢
67	Spectator ions can be identified and the equations can be rewritten omitting these ions: sodium hydroxide + sulphuric acid \rightarrow sodium sulphate + Water $2NaOH$ + H_2SO_4 \rightarrow Na_2SO_4 + H_2O Rewrite to include all ions separately $2Na^+$ + $2OH^-$ + $2H^+$ + SO_4^{2-} \rightarrow $2Na^+$ + SO_4^{2-} + $2H_2O$ Cancel out any spectator ions which appear on both sides $2Na^+$ + $2OH^-$ + $2H^+$ + SO_4^{2-} \rightarrow $2Na^+$ + SO_4^{2-} + $2H_2O$ Cancel out any spectator ions which appear on both sides $2Na^+$ + $2OH^-$ + $2H^+$ + SO_4^{2-} \rightarrow $2Na^+$ + SO_4^{2-} + $2H_2O$ Re-write equation omitting spectator ions $2OH^-$ + $2H^+$ \rightarrow $2H_2O$		⊗	: ::	:
68	For neutralisation reactions, equations can be written omitting spectator ions:For metal oxides $2H^+(aq) + O^{2-}(aq) \longrightarrow H_2O(l)$ for metal hydroxides $H^+(aq) + OH^-(aq) \longrightarrow H_2O(l)$ for aqueous metal carbonates $2H^+(aq) + CO_3^{2-}(aq) \longrightarrow H_2O(l) + CO_2(g)$ for insoluble metal carbonates $2H^+(aq) + CO_3^{2-}(s) \longrightarrow H_2O(l) + CO_2(g)$		8	٢	0
69	In an acid-base titration, the concentration of the acid or base is determined by accurately measuring the volumes used in the neutralisation reaction. • an indicator can be added to show the end-point of the reaction. • an indicator can be added to show the end-point of the reaction. • an indicator can be added to show the end-point of the reaction. • The burette is filled with hydrochloric acid of a known concentration and the volume of the hydrochloric acid in the burette is recorded (at the bottom of the meniscus). Hydrochloric acid is added from the burette into the flask until the colour in the flask changes. The final volume is recorded. • The first titration is done in a way to work out the rough volume where the colour change takes place. • Subsequent titrations involve the initial transfer of most of the volume from the rough titration is added drop by drop until the colour changes. • The titration is repeated until at least two results are obtained within 0.2cm ³ of each other The average volume is taken and then used to work out the number of moles of hydrochloric acid from the average volume and the already known concentration		\odot		:

	Give e.g. A requ Calc no o	en a bala • the oth A 50.0 cr iire 27.4 ulate the f mol Fe	anced conce er rea m ³ sam cm ³ o e chror ²⁺ = vo 5.	equat entration ctant a apple of f 0.020 mate io alume x $3Fe^{24}$ $_{3mol}$.48x10.4r	ion for th on of one and the ve contamina 0 mol l ⁻¹ n concentra concentra - + Cl 1 nol 1.83	the reaction reactant plumes of ated water fron(II) suffraction, in r ation = 0.0 $CO_4^{2^-} + \{E_{nol}^{nol} \\ \times 10^{-4}mol \end{bmatrix}$ = $\frac{no o fmo}{volume}$	n oc can bo con pha nol 274 3H ⁴	ccurring in an be calculated th solutions ataining chrom the solution to 1^{-1} , present in to x 0.02 = 5.48x $4 \rightarrow 3Fe$ $= \frac{1.83x10^4 \text{ mo}}{0.05 \text{ litres}}$	y titr d give ate io reach the sa 10^{-4} m 2^{3+} +	ation: en the o ns was the eno mple of nol Cr ³⁺	titrated a l-point. f water. + 4H ₂ C	ation of and found	the l to			
70	e.g.	 the and calculate 	volun l the c the vol	ne of o oncent	ne reacta trations c 0.1mol l-1 s	nt can be of both so odium hydi	cal lutio	culated given ons le required to ne	the v	volume se 25cm	e of the o ³ of 0. 2ma	ther rea	ctant uric acid.	ŝ		\odot
	U	◀	—— Su	lphuric	acid	→ .		•		Sodium	hvdroxide		•			
		V	X	С	Х	Р	=	V	х	С	X	P				
		volume		concentra	tion	power		volume		concentra	ation	pow	er			
		25	Х	0.2	Х	2	=	V	Х	0.1	. Х	1				
						10	=	V	Х	0.1						
						10/0.1	=	V								
						100cm ³	=	V							n	
	NB: A	Acids & A	lkalis h	lave a po	ower based	on the nun	ıber	of H+ or OH- ion	s in th	e formu	la:				n	
			Acid	Í	Formula	Power		Alkal	i		Formula	Power				
		Hydro	ochloric a	ncid	HCl	1		Sodium hyd	lroxide		NaOH	1				
		Sulp	huric Aci	id	H ₂ SO ₄	2	-	Potassium hy	droxide	9	KOH	1				
		Ni	itric Acid		HNO ₃	1		Calcium hyo	iroxide		Ca(OH) ₂	2				

Anomologous series is a family of compounds withitemitemitemitem1A homologous series is a family of compounds withitemitemitemitem2A homologous series include melting points, holling points, solubilityitemitemitemitem2Melting & boiling points increase as the size of molecule increases for any homologous seriesitemitemitem3Hydrocarbons are compounds containing only hydrogen and carbon atomsitemitemitem3Hydrocarbons are compounds containing only hydrogen and carbon atomsitemitemitem3Hydrocarbons are compounds containing only carbon-carbon abulto bas are described as suturated.itemitem4Alkanes and cycloalkanes are saturated hydrocarbonsitem as a suturated hydrocarbonsitemitem5Dompounds containing only carbon-carbon abulto hydrocarbonsitemitemitem6Compounds containing only carbon-carbon abulto hydrocarbonsitemitemitem7Hullen abultonitem as a full or a shortered structural formula.itemitem6Full Structural FormulaHullen H Hullen H H		0.0.0	0	I	Vati	onal 5 Chem	istrv			1	u	Tra	ffic L	ight
A homologous series is a family of compounds with i		chen	Uni	it 2.1 Nan	ning	and Drawin	g Hydrocarl	bons	chem		Lesso	Red	Amber	Green
1 • same general formula (a) 2 • similar chemical properties. Patterns are often seen in the physical properties of the members of a homologous series. • Physical properties include melting points, solubility 2 Metting & boiling points increase as the size of molecule increases for any homologous series between the molecules. • These changes in physical properties are due the strength of the intermolecular forces between the molecules. 3 Hydrocarbons are compounds containing only hydrogen and carbon atoms (a) (a) • alkanes, alkenes are examples of homologous series (a) (a) Compounds containing only carbon-carbon single bonds are described as saturated. • Alkanes and cycloalkanes are examples of homologous series (a) 1 tis possible to distinguishs an unsaturated compound form a saturated compound using brown as a full or a shortened structural formula. (a) (a) 5 brown seturated compounds decolourise brown so solution quickly e.g. alkanes and cycloalkanes (a) (b) (c) 6a Full Structural Formula (H) (H) (H) (H) (H) 6a Full Structural Formula (H)		A homol	ogous seri	es is a family o	of com	pounds with	-8 9 0 00 1						1	
• similar chemical properties. Patterns are often seen in the physical properties of the members of a homologous series. • Physical properties include melting points, boiling points, solubility Melting & boiling points increases as the size of molecule increases for any homologous series • These changes in physical properties are due the strength of the intermolecular forces increases • Alkanes, alkenes and cycloalkanes are examples of homologous series • Alkanes, alkenes and cycloalkanes are examples of homologous series • Alkanes, alkenes and cycloalkanes are saturated hydrocarbons Compounds containing only carbon-carbon single bonds are described as subtrated. • Alkanes and cycloalkanes are saturated onpound from a saturated compound using bromine solution quickly e.g. alkenes and cycloalkanes 5 • Staturated compounds decolourise bromine solution quickly e.g. alkenes and cycloalkanes • Saturated compounds de and decolourise bromine solution quickly e.g. alkenes and cycloalkanes • Staturated compounds do not decolourise bromine solution quickly e.g. alkenes and cycloalkanes • Saturated compounds do not decolourise bromine solution quickly e.g. alkenes and cycloalkanes • Saturated compounds do not decolourise bromine solution quickly e.g. alkenes and cycloalkanes • Saturated compounds do not decolourise bromine solution quickly e.g. alkenes and cycloalkanes • Saturated compounds with:	1	• s	ame gene	ral formula								$\overline{\mbox{\scriptsize ($)}}$	\bigcirc	\odot
$ \begin{array}{c} Privaterns are onto seen in the physical properties induce moleting points, soluting points, soluting, and excloalkanes are examples of homologous series. 3 Hydrocarbons are compounds containing only hydrogen and carbon atoms a alkanes, alkenes and cycloalkanes are examples of homologous series. Alkanes and cycloalkanes are saturated hydrocarbons Compounds containing only carbon-carbon double bonds are described as sunsaturated. Alkanes and cycloalkanes are saturated compound from a saturated compound using bromine solution quickly e.g. alkanes and cycloalkanes bromine soluting a solution quickly e.g. alkanes and cycloalkanes The structural formula CH_1CH_2CH(CH_3) CH_2-CH_4 H_1CH_2-H_4 H_1CH_2-H_4 H_1CH_2-H_4 H_1CH_2-H_4 H_1CH_2-C_2-C_2-C_2-C_2-H_1 H_2-C_2-C_2-C_2-C_2-H_1 H_2-C_2-C_2-C_2-H_1 H_2-C_2-C_2-C_2-H_1 H_2-C_2-C_2-C_2-C_2-H_1 H_2-C_2-C_2-C_2-C_2-H_1 H_2-C_2-C_2-C_2-C_2-H_1 H_2-C_$		• s	imilar che	emical propert	ies.		h C . h	1		$ \longrightarrow $				
2Melting & boiling points increases as the size of molecule increases for any homologous series • These changes in physical properties are due the strength of the intermolecular forces is between the molecules. • As size of molecule increases, the strength of the intermolecular forces increases • Hydrocarbons are compounds containing only hydrogen and carbon atoms • alkanes, alkenes and cycloalkanes are examples of homologous series • alkanes and cycloalkanes are examples of homologous series • alkanes and cycloalkanes are examples of homologous series • alkanes and cycloalkanes are saturated hydrocarbons • alkanes and cycloalkanes • alkanes and cycloalkanes • alkanes and cycloalkanesImage: Compound second		Patterns • F	are often bysical pr	seen in the ph coperties inclu	ysicai de me	properties of the fi	property of a nomo	logous se	ries.					
2 • These changes in physical properties are due the strength of the intermolecular forces between the molecules. 3 Hydrocarbons are compounds containing only hydrogen and carbon atoms • Alkanes, alkenes and cycloalkanes are examples of homologous series ③ • Alkanes, alkenes and cycloalkanes are examples of homologous series ③ • Alkanes, alkenes and cycloalkanes are examples of homologous series ③ • Alkanes, alkenes and cycloalkanes are examples of homologous series ● • Alkanes and cycloalkanes are examples of homologous series ● • Alkenes are unsaturated hydrocarbons ● Compounds containing at least one carbon-carbon duble bond are described as unsaturated. ● • Alkenes are unsaturated hydrocarbons ● tis possible to distinguish an unsaturated compound from a saturated compound using bromine solution quickly e.g. alkanes and cycloalkanes ● • Unsaturated compounds decolourise bromine solution quickly e.g. alkanes and cycloalkanes ● • Startated ompounds decolourise bromine solution quickly e.g. alkanes and cycloalkanes ● • Full Structural Formula H H H+C+H H H • Full Structural Formula but different structural formulae H H H • Same molecular formula but different structural formulae H	2	Melting	& boiling p	points increase	as th	e size of molecule i	ncreases for any ho	omologou	s series	;		(\odot	\odot
between the molecules. • A size of molecule increases, the strength of the intermolecular forces increases 3 Hydrocarbons are compounds containing only hydrogen and carbon atoms • alkanes, alkenes and cycloalkanes are examples of homologous series Compounds containing only carbon-carbon single bonds are described as saturated. • Alkenes are unsaturated hydrocarbons Compounds containing at least one carbon-carbon double bond are described as unsaturated. • Alkenes are unsaturated hydrocarbons Compounds containing at least one carbon-carbon double bond are described as unsaturated. • Alkenes are unsaturated hydrocarbons tis possible to distinguish an unsaturated compound from a saturated compound using bromine solution. • Unsaturated compounds decolourise bromine solution quickly e.g. alkanes and cycloalkanes • Saturated compounds do not decolourise bromine solution quickly e.g. alkanes and cycloalkanes • Saturated compounds do not decolourise bromine solution quickly e.g. alkanes and cycloalkanes • The structure of any molecule can be drawn as a full or a shortened structural formula. • Full Structural Formula • H H H H H H H H H H H H H H H H H H H	2	• 1	hese char	nges in physica	ıl prop	perties are due the	strength of the inte	ermolecul	ar force	es			Θ	\bigcirc
• As size of indictude inference of the interindectual forces increases• alkanes3Hydrocarbons are compounds containing only hydrogen and carbon atoms • alkanes, alkenes and cycloalkanes are examples of homologous series(a)Compounds containing only carbon-carbon single bonds are described as saturated. • Alkanes and cycloalkanes are saturated hydrocarbons • Alkenes are unsaturated hydrocarbons • Unsaturated compounds containing at least one carbon-carbon double bond are described as unsaturated. • Alkenes are unsaturated hydrocarbons • Unsaturated compounds decolourise bromine solution quickly e.g. alkenes • Saturated compounds decolourise bromine solution quickly e.g. alkanes and cycloalkanes • Unsaturated compounds decolourise bromine solution quickly e.g. alkanes and cycloalkanes5Intestructure of any molecule can be drawn as full or a shortened structural formula.6aFull Structural FormulaHuff-C-HHHuff-HH </td <td></td> <td>b</td> <td>etween th</td> <td>ne molecules.</td> <td></td> <td>he strongth of the i</td> <td>ntorm ologular forg</td> <td>a in mana</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		b	etween th	ne molecules.		he strongth of the i	ntorm ologular forg	a in mana						
3 • alkanes, alkenes and cycloalkanes are examples of homologous series (S) (E) (S) 4 • Alkanes and cycloalkanes are examples of homologous series (S) (E) (S) 4 • Alkanes and cycloalkanes are examples of homologous series (S) (E) (S) 4 • Alkanes and cycloalkanes are staturated hydrocarbons (Compounds containing at least one carbon-carbon double bond are described as unsaturated. (S) (E) (S) 5 • Alkenes are unsaturated hydrocarbons (E) (E) (S) (E) (S) 5 bromine solution. • Unsaturated compounds decolourise bromine solution quickly e.g. alkanes and cycloalkanes (E) (S) (E) (S) 6a Full Structural Formula H H H H H (H) (H) </td <td></td> <td>• F Hvdroca</td> <td>rbons are</td> <td>compounds co</td> <td>ontain</td> <td>ing only hydrogen</td> <td>and carbon atoms</td> <td>es mereas</td> <td>ses</td> <td></td> <td></td> <td></td> <td></td> <td></td>		• F Hvdroca	rbons are	compounds co	ontain	ing only hydrogen	and carbon atoms	es mereas	ses					
Compounds containing only carbon-carbon single bonds are described as saturated.4• Alkanes and cycloalkanes are saturated hydrocarbons Compounds containing at least one carbon-carbon double bond are described as unsaturated. • Alkenes are unsaturated hydrocarbons tis possible to distinguish an unsaturated compound from a saturated compound using bromine solution. • Unsaturated compounds decolourise bromine solution quickly e.g. alkanes and cycloalkanes • Saturated compounds decolourise bromine solution quickly e.g. alkanes and cycloalkanes • Saturated compounds decolourise bromine solution quickly e.g. alkanes and cycloalkanes • Saturated compounds decolourise bromine solution quickly e.g. alkanes and cycloalkanes • Saturated compounds decolourise bromine solution quickly e.g. alkanes and cycloalkanes • Saturated compounds decolourise bromine solution quickly e.g. alkanes and cycloalkanes • Saturated compounds decolourise bromine solution quickly e.g. alkanes and cycloalkanes • Saturated compounds decolourise bromine solution quickly e.g. alkanes and cycloalkanes • Saturated compounds decolourise bromine solution quickly e.g. alkanes and cycloalkanes • Full Structural Formula••	3	• a	lkanes, all	kenes and cycl	oalka	nes are examples of	f homologous serie	es				\odot	\ominus	\odot
4• Alkanes and cycloalkanes are saturated hydrocarbons Compounds containing at least one carbon-carbon double bond are described as unsaturated. • Alkenes are unsaturated hydrocarbons(a)5• Alkenes are unsaturated hydrocarbons It is possible to distinguish an unsaturated compound from a saturated compound using both in solution. • Unsaturated compounds decolourise bromine solution quickly e.g. alkanes and cycloalkanes • Saturated compounds do not decolourise bromine solution quickly e.g. alkanes and cycloalkanes • Saturated compounds do not decolourise bromine solution quickly e.g. alkanes and cycloalkanes6aFull Structural FormulaH H H H H C-C-C-C-C-C-H H H H H-C-C-C-C-C-H H-C-C-C-C-H H-C-C-C-C-H H H-C-C-C-C-H H H-C-C-C-C-H H-C-C-C-C-H H H-C-C-C-C-H H H-C-C-C-C-H H H-C-C-C-C-H H H-C-C-C-C-H H H-C-C-C-C-H H H-C-C-C-C-H H H-C-C-C-C-H H H-C-C-C-C-H H H-C-C-C-C-H H H-C-C-C-C-H H H-C-C-C-C-H H H-C-C-C-C-H H H-C-C-C-C-H H H-C-C-C-C-H H H-C-C-C-C-H H H-C-C-C-C-H H H-C-C-H H H H H-C-C-C-C-H H H-C-C-C-C-H H H-C-C-C-C-H H H-C-C-C-C-H H H-C-C-C-C-H H H-C-C-C-C-H H H-C-C-C-C-H H H H H H H H H H H H-C-C-C-C-H H H-C-C-C-C-H <td></td> <td>Compou</td> <td>nds contai</td> <td>ining only carb</td> <td>on-ca</td> <td>arbon single bonds</td> <td>are described as sa</td> <td>aturated.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Compou	nds contai	ining only carb	on-ca	arbon single bonds	are described as sa	aturated.						
$ \begin{array}{c} \text{Compounds containing at least one carbon-carbon double bond are described as unsaturated.} \\ \text{Output one unsaturated low processors} \\ \text{It is possible to distinguish an unsaturated compound from a saturated compound using bromine solution.} \\ \text{Output of any molecule can be drawn as a full or a shortened structural formula.} \\ \text{Full Structural Formula} \\ \hline \text{H} HHCHHHH H HHCHHHHHHCCHCHCHARD HHCCHCHARD HHCCHCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH$	4	• A	lkanes an	d cycloalkane	s are s	aturated hydrocar	bons			L		\odot	\odot	\odot
1 1			lkenes ar	ining at least o e unsaturated	ne cai	rbon–carbon doubl	e bond are describe	ed as unsa	aturateo	J.			-	
5 bromine solution. • Unsaturated compounds decolourise bromine solution quickly e.g. alkenes • Saturated compounds do not decolourise bromine solution quickly e.g. alkanes and cycloalkanes • Saturated compounds do not decolourise bromine solution quickly e.g. alkanes and cycloalkanes The structure of any molecule can be drawn as a full or a shortened structural formula. H H+H+CHH H Full Structural Formula H H+H+CHH H++C-L-H H Shortened Structural Formula CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₃ CH ₂ =C(CH ₃)CH ₃ • • • • • • • • • • • • • • • • • • •		It is poss	ible to dis	tinguish an ur	satur	ated compound fro	m a saturated com	pound usi	ing					
• Unsaturated compounds decolourise bromine solution quickly e.g. alkenes • Saturated compounds do not decolourise bromine solution quickly e.g. alkanes and cycloalkanes The structure of any molecule can be drawn as a full or a shortened structural formula. Full Structural Formula $H \to H + H + H + H + H + H + H + H + H + $	5	bromine	solution.	_		-		-	-			\odot	\odot	\odot
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ŭ	• []	 Unsaturated compounds decolourise bromine solution quickly e.g. alkenes Saturated compounds do not decolourise bromine solution quickly e.g. alkanes and cycloal The structure of any molecule can be drawn as a full or a shortened structural formula. 											
6aHH <t< td=""><td></td><td>• 5 The stru</td><td>cture of ar</td><td>ompounds do no ov molecule ca</td><td>n be d</td><td>lrawn as a full or a :</td><td>shortened structur</td><td>al formul</td><td><u>cioaikai</u> a.</td><td>ies</td><td></td><td></td><td></td><td></td></t<>		• 5 The stru	cture of ar	ompounds do no ov molecule ca	n be d	lrawn as a full or a :	shortened structur	al formul	<u>cioaikai</u> a.	ies				
6aFull Structural FormulaH 						<u></u> Н		н И						
6aFull Structural Formula $H-c-c-c-c-c-c-H$ $H-c-c-cH$ $H-c-c-cH$ $H-c-c-c-cH$ $H-c-cH$ $H-c-cH$ $H-c-cH$ $H-cH$ $H-c$		Full Structural Formula H HH-C-HH HH-C-HH												
$\begin{array}{ c c c c c c } \hline H & H & H & H \\ \hline Shortened Structural Formula & CH_3CH_2CH(CH_3)CH_2CH_3 & CH_2=C(CH_3)CH_3 \\ \hline Isomers are compounds with: • same molecular formula but different structural formulae \begin{array}{c c c c c c c c c c c c c c c c c c c $	6a	Full	Full Structural Formula $H - C - C - C - C - H$ $H - C = C - C - H$										Θ	\bigcirc
Shortened Structural Formula $CH_3CH_2CH(CH_3)CH_2CH_3$ $CH_2=C(CH_3)CH_3$ Isomers are compounds with: • same molecular formula but different structural formulae H H H H H 						<u>н н н н н</u>		н						
Isomers are compounds with:• same molecular formula but different structural formulae $H_{H+C+H+H+H}$ $H_{H+C+H+H+H}$ $H_{H+C+H+H+H}$ $H_{H+C+C+C-C+C-C-C-C-C-H}$ $H_{H+C+H+H+H}$ $H_{H+C+H+H+H}$ $H_{H+C+H+H+H}$ $H_{H+C+H+H+H}$ $H_{H+C+H+H+H}$ $H_{H+C+H+H+H}$ $H_{H+C+H+H+H}$ H_{H+H+H} $H_{H+C+H+H}$ H_{H+H} H_{H+H} H_{H+H} H_{H+H} H_{H+H} H_{H+H} H_{H+H+H} $H_{H+C+H+H}$ <td< td=""><td></td><td>Shorten</td><td>ed Struct</td><td>ural Formula</td><td>CI</td><td>$H_3CH_2CH(CH_3)CH_2CH_3CH_2CH_3CH_2CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3$</td><td>CH₃ CH₂</td><td>$_{2}=C(CH_{3})C$</td><td>CH₃</td><td></td><td></td><td></td><td></td><td></td></td<>		Shorten	ed Struct	ural Formula	CI	$H_3CH_2CH(CH_3)CH_2CH_3CH_2CH_3CH_2CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3$	CH ₃ CH ₂	$_{2}=C(CH_{3})C$	CH ₃					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Isomers	are compo	ounds with:	hut di	fforont structural f	ormulaa							
$\begin{array}{ c c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $		• 3		H	butui	inerent structurar i	Н							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				<u></u> нн-Снн н	ЧŅ		<u></u> н нн-с-нн н							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			ŀ	<i>1</i> − <i>Ċ</i> − <i>Ċ</i> − <i>Ċ</i>	- <u>C</u> -	H F	1-C-C-C-C-C-C-	-Н						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			0	нннн	I H		ннннн							
• may belong to different homologous series e.g. alkenes and cycloalkanes $\begin{array}{c} H\\ H-C\\ C-C=C-H\\ H+H\\ H\end{array}$ $\begin{array}{c} H\\ H-C\\ C-C=-H\\ H+H\\ H\end{array}$ $\begin{array}{c} H\\ H-C\\ C-C-H\\ H-H\\ H\end{array}$ $\begin{array}{c} H\\ H-C\\ H\\ H\end{array}$ $\begin{array}{c} H\\ H-C\\ H\\ H\end{array}$ $\begin{array}{c} H\\ H-C\\ H\\ H\end{array}$ $\begin{array}{c} H\\ H-C\\ H\end{array}$ $\begin{array}{c} H\\ H\end{array}$ $\begin{array}{c} H\\ H-C\\ H\end{array}$ $\begin{array}{c} H\\ H\end{array}$ $\begin{array}{c} H\\ H-C\\ H\end{array}$ $\begin{array}{c} H\\ H\end{array}$ $\begin{array}{c} H\end{array}$ $\begin{array}{c} H\\ H\end{array}$ $\begin{array}{c} H\\ H\end{array}$ $\begin{array}{c} H\end{array}$ $\begin{array}{c} H\end{array}$ $\begin{array}{c} H\\ H\end{array}$ $\begin{array}{c} H\end{array}$ $H\end{array}$ $\begin{array}{c} H\end{array}$ H	6h		Z	-methylpenta	$10 C_6 F$	i ₁₄ 3	-methylpentane C_6	H ₁₄				(\mathbf{x})	\odot	\odot
H H H H 	0.0	• n	hay belong	g to different h	omol	ogous series e.g. all	enes and cycloalka	anes					\bigcirc	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Ч			н— С							
Image: H H H H H H H H H H H H H H propene C ₃ H ₆ cyclopropane C ₃ H ₆ e usually have different physical properties e.g. alkenes decolourise bromine solution Given a structural formula for a compound, an isomer can be drawn. Isomers can be drawn for a given molecular formula. Isomers can be drawn for a given molecular formula. C4H ₈ 7 H H H H H H H H H H H H H H H H H H H					—н		н− с−с−н							
propene C_3H_6 cyclopropane C_3H_6 • usually have different physical properties e.g. alkenes decolourise bromine solutionGiven a structural formula for a compound, an isomer can be drawn. Isomers can be drawn for a given molecular formula. C_{4H_8} H_{H-C} C_{H_8} H_{H-C} <t< td=""><td></td><td></td><td></td><td>ннн</td><td></td><td></td><td>ГІ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>				ннн			ГІ							
• usually have different physical properties e.g. alkenes decolourise bromine solutionGiven a structural formula for a compound, an isomer can be drawn. Isomers can be drawn for a given molecular formula. C_{4H_8} H <td></td> <td></td> <td></td> <td>propene C</td> <td>$_{3}H_{6}$</td> <td></td> <td>cyclopropane C₃H</td> <td>6</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				propene C	$_{3}H_{6}$		cyclopropane C ₃ H	6						
Given a structural formula for a compound, an isomer can be drawn. Isomers can be drawn for a given molecular formula. C_{4H_8} H		• u	sually hav	ve different ph	ysical	properties e.g. alke	enes decolourise br	comine so	lution					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Given a s	tructural	formula for a o	compo	ound, an isomer car	ı be drawn.							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Isomers	can be dra	awn for a giver	n mole	Cular formula.	C.H.		. 🖬 .	\neg				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			4118	C4118		C4118	Н Н	н	4118	_				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	7	н н	нн	н н н	н	й нн-С-нн	н_ с _с_н	Н—С				\odot	\odot	\odot
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		н—С=С	–Ḉ–Ḉ–⊦	иµ—└└_└_└_	-Ç—н				\ 					
H H H H H			μц	н	Ч		н—С—С—н	н—С—	ιι_	н				
I DUL-1-EUE I DUL-2-EUE I Z-MEMVIOTODENE I CVCIODUTADE I MEMVIVIOTODADE I I		but	1-ene	hut-2-ene		2-methylpropene	H H cyclobutane	H	H H					

					National 5	Chemistry	7			n	Tra	ffic L	ight
		chem		1	IInit 2 1	h Allvanos		J/AID chem		esso	led	nber	reen
T	•			<u> </u>		DAIKalles			'	L(H	Ar	ß
	A	lkanes ar	e a homolo	gous serie: zused as fi	s of saturated h	ydrocarbons (sat	urated means single bor	nds only)					
8		• are	e insoluble	in water							6	\ominus	\odot
		• car	n be repres	ented by th	ne general form	ula C_nH_{2n+2}							
	A	lkanes w	ith straight Molecular	chains hav	ve the following	structure:			٦				
		Alkane	Formula	Shorter	ied Formula	S	tructural Formula		41				
		Methane	CH ₄		CH4		н− <i>с</i> −н н						
		Ethane	C_2H_6	C	CH3CH3		н н н−с−с−н н н						
		Propane	C_3H_8	СН	3CH2CH3	Ŧ	ӉӉӉ ⊷ <i>с−с−с</i> −н ӊ҅ӊ҅ӊ						
9a 10a		Butane	C_4H_{10}	CH3C	CH2CH2CH3	H–	ӉӉӉ <i>С−С−С−С</i> −н ӈ҅ҧ҅ҧ				$\overline{\mathbf{o}}$	☺	0
		Pentane	$C_{5}H_{12}$	CH₃CH	2CH2CH2CH3	1-0-1 - 1							
		Hexane	C_6H_{14}	CH ₃ CH ₂ C	CH2CH2CH2CH3	л-о-т ТТ	ӉӉӉӉӉ - <i>С</i> − <i>С</i> − <i>С</i> − <i>С</i> −Ӊ ӊ҄҅ӊ҅ӊ҅ӊ						
		Heptane	C ₇ H ₁₆	CH3CH2CH	2CH2CH2CH2CH3	н н н−с−с н н	┤ Ӊ Ӊ Ӊ Ӊ Ӊ ⊆_С_С_С_С_С_ ┤ Ӊ Ӊ Ӊ Ӊ Ӊ						
		Octane	$C_{8}H_{18}$	CH3CH2CH2C	CH2CH2CH2CH2CH3	н н +сс- нн -	Ч Ч Ч Ч Ч Ч -C-C-C-C-C-C- Ч Ч Ч Ч Ч	H					
	A	lkanes ca	n also have	e a branche	d chain structu	re. Some example	es include:						
		н н—с- н	н н-С-н н —С—С— н н	н - С— н Н	н н н—с—с— н н _н -	Н Н Н С—С—С—Н С-нН Н Н	нн-Снн н нн-Снн н н–С–С–С–С н _{н-Сн} н н _{н-Сн} н н н н	4 2— 14 4					
		2-1	methylbuta	ne	<u>3-methy</u>	ylpentane	2,2,3-trimethylb	utane					
9b 10b		Ч У —Н Ч	н н-С-н н ССС _{н-} С-н н н	н С— н Ч	н			ן כ− µ ן			\odot		٢
		2,2-0	dimethylbu	tane	2,2-dimet	hylpropane	2,3-dimethylbu	tane					
		н+ НС- Н ₊	н -С-нң ң -С-С-С-С- 1-С-нҢн-С-1	н _с_н +	н Нн-Сн Н—С—С— Н Нн	н н нн-С-н н н -C-C-C-C-C-н н н н-с-н н н н н-С-н н н н-С-н н н н-С-н н н н-С-н н н н-С-н н							
		2,2,4-1	н н trimethylpe	entane	2,3-dimet	н thylpentane	2-methylprop	ane					

				National 5	Chemistr	V		1	u	Traf	ffic L	ight
	chem			Unit 2.1	c Alkenes	y	chem		Lesso	Red	Amber	Green
11	Alkenes are are are cont cont can	a homolog used to ma insoluble in tain the C= be represe	gous serie ke polym n water C double nted by t	s of unsaturated ers and alcohols bond functional he general form	l hydrocarbons 5 group ula C _n H _{2n}	(unsaturated = at least one d	ı ouble bon	d)		\odot	:	©
	Straight-cha	ain alkenes	can be d	rawn. The positi	on of the double	e bond must be indicat	ed in th	e				
	Alkane	Molecular Formula	Short	ened Formula		Structural Formula						
	Ethene	C_2H_4	Cl	H ₂ =CH ₂		н− <i>с</i> =с−н н н						
	Propene	C ₃ H ₆	CH	3CH=CH2		н н−с−с=с−н н н н						
	But-1-ene	C_4H_8	CH ₃ (CH ₂ CH=CH ₂	F	ӊӊ +-сс-с=сн ӊ҅ӊ҅ӊ҅ӊ						
	But-2-ene	C_4H_8	CH ₃	CH=CHCH₃		н н н н н- <i>С</i> - <i>С</i> = <i>С</i> - <i>С</i> -н н н						
12a	Pent-1-ene	$C_{5}H_{10}$	CH₃CH	2CH2CH=CH2	H	ннн - <i>с</i> − <i>с</i> − <i>с</i> − <i>с</i> = <i>с</i> −н нннн				<u>()</u>	<u></u>	\odot
13a	Pent-2-ene	$C_{5}H_{10}$	CH ₂ CH	H=CHCH ₂ CH ₃	н—	н нн с-с=с-с-с-н нннн))	Ŭ
	Hex-1-ene	C_6H_{12}	CH ₃ CH ₂	CH ₂ CH ₂ CH=CH ₂	א עא א	н н н н С−С−С−С−С=С−н н н н н н н						
	Hex-2-ene	C_6H_{12}	CH ₃ CH ₂	CH ₂ CH=CHCH ₃	н н—С н	нн н −с́−с́−с=с−с́−н н่н่н่н	l					
	Hex-3-ene	C_6H_{12}	CH ₃ CH ₂	CH=CHCH ₂ CH ₃	н н—с н	∣н нн _с_с_с_с_с_н ⊔йййй						
	Hept-1-ene	C_7H_{14}	CH3CH2CI	H2CH2CH2CH=CH2	⊢ ⊢С− ⊢	ӋӋӋ - <i>C—C—C—C—C</i> =C—I <u>坮坮坮坮坮</u>	н					
	Oct-1-ene	$C_{8}H_{16}$	CH ₃ CH ₂ CH	2CH2CH2CH2CH=CH2	н н н—с—с н н	┤ Ӊ Ӊ Ӊ Ӊ C—C—C—C—C—C—C= ┥ ӈ ӈ ӈ ӈ ӈ	-H					
	Alkenes wit	h branches	s ca <u>n be d</u>	rawn:	14 14			_				
	н н—с ц	ч-с-нн -ЗЗ-н -ЗЗ=З ц ц	–н	н−с=с- н́н-с-⊦	н н -с_с_н н н	н-с-нн н-с=с-с-с-с-с-с- н ц ц ц н	-н					
12b	2-me	thylbut-2-e	ene	н 2-methyll	out-1-ene	3-methylbut-1-e	ene			(3)	\odot	\odot
13b	н н—с н	н-С-нн –С=С–С– н-С-н н н-С-н н	-н	н н_с <u>=</u> с– н н	^н ŀ-С-нн С-СН ŀ-С-нн 	н+-С-нн - н-С=С-С-⊦ н	ł				9	
	2,3-dim	ethylbut-2	2-ene	3,3-dimethy	vlbut-1-ene	methylpropen	e					

			N	ational	5 Cher	mistry				u	Tra	ffic L	ight
	chem		1.	Unit 2.2	2a Alco	hols			chem	Lessc	Red	Amber	Green
19	Alcohols a	e used as fue	els as they a	are highly f	lammable	and burn	with very	clean flam	es		$\overline{\odot}$	\odot	\odot
20	Alcohols ar	e often used	as solvent	s							<u> </u>		<u> </u>
20	• alc	ohol is the ma	ain constit	uent of met	thylated sp	oirits (met	hs), a usef	ul solvent			0	Θ	\bigcirc
	Methanol,	ethanol and p	oropanol a	re miscible	with wate	r, thereaft	er the solu	ubility dec	reases as	s			
	size increa	ses			_								
21	• mis	cible means	that the al	cohols mix	with wate	r and do n	ot separat	e.	1 -	_	(\mathbf{i})	(\odot
	Alcohol	Methanol	Ethanol	Propanol	Butanol	Pentanol	Hexanol	Heptanol	Octano	ol	Ŭ)
	Solubility	Very solul	le in water	3	4	5	0	/	insolub	le			
	As increase	in the size o	f an alcohe	lincreases	the melti	ng & hoilir	ng noints	-	IIISOIUD				
	• thi	s is caused by	the incres	n increases	oth of the i	ntermolec	ular force	s					
	Alcohol	Methanol	Ethanol	Propanol	Butanol	Pentanol	Hexanol	Heptanol	Octano	ol			
	No of Carbo	ons 1	2	3	4	5	6	7	8	<u>, -</u>			
22	Melting Po	int low	·						high		\odot	\odot	\odot
	Boiling Poi	nt low							High				
	Strength	of											
	intermoleci	llar weaker							strong	er			
22		· · · · · · · · · · · · · · · · · · ·		1 1							\odot	\odot	<u>.</u>
23	An alcohol	is a molecule	containin	g a hydroxy	yl –OH fun	ctional gro	oup.				\odot	Θ	\bigcirc
24	Saturated,	straight-chai	n alcohols	have the ge	eneral form	nula C _n H _{2n}	+10H				$\overline{\mathbf{S}}$	\odot	\odot
	• Sat	urated alcoho	<u>) IS do not (</u>	contain C =	the positive	bonds	dwad		an ha		-	-	-
	drawn and	an alconois	are nameu	indicating	the position	on of the h	yuroxyi –	OH group (can be				
			Н	Н	F	1 4 4		НН	Н				
									- <u>′</u>	1			
	н—0	— Он	H-C-	-C- 0H				1-C-C	-с-н				
	ŀ	4	н	Н	H	нн	_	но	НН				
25-	me	hanol	et	thanol	I	propan-1-o	1	propan	-2-ol				
25a	нн	ΗΗ	H	ЛНН Н	. H	ннни	H	ннн	ΗН		$\overline{\mbox{\sc s}}$	\odot	\odot
20a	H-C-C-	-с-с-он	H-C-(<u> </u>	•H H-С-	<i>C</i> -	с— он Н	-C-C-C-	- <u>C</u> -C-	Н			
	ΗЙ	нн	HI	АНН	н	ннни	н	ннн	ÓНН				
	buta	<u>in-1-ol</u>	but	tan-2-ol	1	pentan-1-o	1	pentan	-2-ol				
	НН	н н н	ННИ	ЧННН		нннн	ЧН	ннні	ННН				
	H-C-C-	с-с-с-н			ин-с-	u u u d	с—н н-	<u></u>	с—с—с— 506 й	н			
	HH	OHH H	hor	ran 1 ol		hovan 2 ol	'nn	hoven					
		ith branchod	chains car	ho drawn		Ilexall-2-01		llexall-	5-01		-		
	AICOHOIS W			I De ulawii	н			ы					
		ուշու		н	н-С-н Н		Ц	цн-сн ц	J				
	F	1 н-С-н н				ы							
	Н—(c - c - c - c	ЭН	н—с ,!,	-c-c-	п	H-C-	C - C - C	— ОН				
25h	ŀ	чнн		н	онн		H	ННЬ	1			_	_
250 26h	2-m	ethylpropan-1	-ol	2-meth	ylpropan-2	-ol	2-m	ethylbutan-	1-ol		\odot	\odot	\odot
200					н			н					
	H H	ΠΥΠΗΗ	1	н	HHCHH	1	Ηч	-YHH F	4				
	H-C	-C-C-C	H_	H— C—	C-C-C	Н—	H-C-	C-C-C	С— ОН	-			
	Н	онн н		н́	онн н	1	Ļ	ս ս ս	1				
	2-m	ethylbutan-2-	ol	3-metl	hylbutan-2-	ol	3-m	ethylbutan-	1-ol				

	JAB		Na	ational	5 Cher	mistry			JAB		son	Tra	ffic Li ឆ	ight इ
	chem		Unit	2.2b C	arboxy	vlic Aci	ds		chem		Les	Red	Amb	Gree
27	Carboxylic solution of cleaning pr	acids are use ethanoic acic oducts as it is	d in the pro l, with mole s a non-tox	eparation o ecular form ic acid so o	of preserva nula CH ₃ CO can be useo	atives, soaj OOH. Vineg d safely in	ps and me gar is used household	dicines. Vi l in househ l situation:	negar is Iold S.	a		$\overline{\mathbf{S}}$:	\odot
28	Methanoic, decreases a • mis Carboxylic a No of Carb Solubilit	ethanoic, pro s size increa cible means cid Methanoic ons 1 Very solu	opanoic and ses. that the car Ethanoic 2 ble in water	d butanoic boxylic ac Propanoic 3	acid are n ids mix wi Butanoic 4	niscible in th water a Pentanoic 5	water, the nd do not Hexanoic 6	reafter the separate. Heptanoic 7	e solubili Octanoi 8 insolubl	ty c le		$\overline{\mathbf{S}}$:	٢
29	As increase this Carboxylic A No of Carbo Melting Po Boiling Poi Strength c intermolecu forces	in the size o is caused by cid Methanoic ns 1 nt low nt low f lar weaker	f an carbox the increa Ethanoic 2	ylic acid in sing streng Propanoic 3	ncreases th gth of the i Butanoic 4	ne melting ntermolec Pentanoic 5	& boiling ular force: Hexanoic 6	points s. Heptanoic 7 • •	Octanoi 8 high High stronge	c er		3	:	
30	Carboxylic	acids can be	identified b	by the carb	oxyl –COO	H functior	nal group.					$\overline{\mbox{\scriptsize (s)}}$	\bigcirc	\odot
31	Carboxylic	acids have th	e general f	ormula C _n l	$H_{2n+1}COOH$	[.						$\overline{\mbox{\scriptsize (s)}}$	\bigcirc	\odot
32 33	Carboxylic acids have the general formula $C_nH_{2n+1}COOH$. Straight-chain carboxylic acids can be drawn and named: $\begin{array}{c c c c c c c c c c c c c c c c c c c $							4		\odot	(\mathbf{i})	:		
34	Solutions o can methanoi ethanoi propanoi butanoi	f carboxylic a react with m \circ salts form cacid + cacid + cacid + pot cacid + lit	icids have a letals, meta ned from s magnesiu sodium ox assium hyo thium carb	a pH less th Il oxides, h traight-cha Im — tide — droxide — onate —	nan 7 (like ydroxides ain carbox → magne → sodiun → potass → lithiur	other acid and carbo ylic acids c esium met n ethanoat sium propa n butanoat	ls) nates to fo can be nan hanoate te anoate te	orm salts. ned. + hydrogei + water + water + water + water + (1 CO2			3	:	0

				Nationa	15 Cho	mictra	7				u	Traf	ffic L	ight
H	chem		U	nit 2.3 En	ergy F	rom Fi	iels		chem		Lesso	Red	Amber	Green
35	A reaction process tha Reactions Exe En	or process th at takes in he with energy othermic rea	nat rele eat ene change actions	eases heat ener rgy is describe s can raise or release energ	rgy is desc ed as endo lower the gy to the su	ribed as e thermic. temperatu rrounding	xothermi ure of the gs (raising	c. A reaction surrounding the temperative the temperative temperat	n or gs: uture)	പ		$\overline{\mathbf{O}}$		0
36	In combust	tion. a substa	ince re	acts with oxyg	gy nom ei	ng energy.		weinig the te	inperatur			$(\dot{\sim})$	\odot	\odot
37	Hydrocarb dioxide and Equations meth CI eth C2 cyclob C4 etha	ons and alco d water. can be writte nane H4 ene H4 outane H8 anol	hols bu en for t + + + + +	irn completely the complete co oxygen 2O2 oxygen 3O2 oxygen 6O2 oxygen	y in a plent ombustior 	iful supply of hydroo carbon Corbon 20 carbon 40 carbon	y of oxyge carbons a dioxide O2 dioxide CO2 dioxide CO2 dioxide CO2 dioxide	en to produ nd alcohols + + + + + + + + +	ce carbo water 2H ₂ O water 2H ₂ O water 4H ₂ O water	n		\odot		٢
	C ₂ H	50H ·	ł	302		20	202	+	3H ₂ O					
38	Fuels burn	releasing di	fferent	quantities of e	energy.							$\overline{\mbox{\scriptsize (i)}}$	\odot	\odot
39a	i ne quanti	ty of heat en	ergy D	ethanol	spirit	hermometer draug shie	ght Id	xperimenta	iny using			ŝ		0
	The quanti	ty of heat en	ergy re	eleased can be	calculated	l using the	equation	$E_h = cm\Delta T$						
39b	The quanti	Eh Heat Energy (kJ)	=	C Specific Heat Capae (kJ kg ⁻¹ °C ⁻¹) an be calculate	X city) ed. in the c	Mass (kg)	Char Char	ΔT nge in temperat (°C) relevant dat	ure					
40	e.g. Burning a to 49°C. The p Calculate the E Calculate the Calculate the Calculate the	$E_{h} = C \times M \times \Delta T$ Heat Energy $KJ = K + 18 \times 0.2 \times 6$ $E_{h} = C \times M \times \Delta T$ $E_{h} = C \times M \times \Delta T$ Heat Energy $KJ = C^{-1} \times C^{-1} \times C^{-1}$ $K = C^{-1} \times C^{-1} \times C^{-1} \times C^{-1}$ $Kg = C^{-1} \times C^{-1} \times C^{-1} \times C^{-1}$ $Kg = C^{-1} \times C^{-1} \times C^{-1} \times C^{-1}$ $Kg = C^{-1} \times C^{-1} \times C^{-1} \times C^{-1}$ $Kg = C^{-1} \times C^{-1} \times C^{-1} \times C^{-1}$ $Kg = C^{-1} \times C^{-1} \times C^{-1} \times C^{-1} \times C^{-1}$ $Kg = C^{-1} \times C^{-1} \times C^{-1} \times C^{-1} \times C^{-1}$ $Kg = C^{-1} \times C^{-1$										\odot		

	JAB				Nat	iona	al S	5 Ch	emi	stry	y				JAB	3	son	Tra	fic L	ight
	chem			Un	it 3.	1a]	Me	etalli	ic B	ond	ing				cherr	n	Less	Red	Amber	Green
1	Metallic bo positively • Po sho • Th	onding i chargec sitively ell of ele e outer	s the el l ions an charge ectrons electro	ectros nd del d ions ns are	tatic fo ocaliso consis the do	orce o ed ele st of t elocal	of at ectro he n ised	tractio ons. iucleus l electr	on bet s and f	ween the in	ner	es es	+_++++++++++++++++++++++++++++++++++++			(+) (+) (+)		\odot	٢	\odot
2	Metallic el	ements	are con	ducto	rs of e	lectri	city	becau	se the	ey con	tain d	eloca	alised	elect	rons	11		$\overline{\mathbf{i}}$	(:)	\odot
	• Ele	ctrons a	are free	to m	ove ac	ross t	the r	netal b	by jun	iping	from	outer	· shell	to ou	iter sh	ell		Tra	fic L	ight
	JAB chem			Uni	Nat:	1011 1 b F	ai : Sea	o Un Inctio	emi	lstry f Me	y etals				JAB chem	3	lossar	Red	Amber	Green
	The reaction	on of me	etals wi	th oxv	gen ca	n be	writ	ten as	:								Π		ł	
3a	meta	al + +	C	oxyge Oxyge	en n		▶▶	m Irc	etal	oxid	le le							6		\odot
	4F	e +		30	2		•	2	2Fe	2 0 3	}									
3b	The reaction meta magnes	on of me al + ium +	etals wi	th wat wate wate	r r	ı be w 	vritt ≁ ≁	en as: meta magne	al hy esium	drox hydr	xide oxide	+ +	hy h	ydro	gen ^{gen}			::		\odot
	IVIE	5 +	۷ ک	$2H_2$	U		▶	ĮVI	lg(JH	2	+		H	2					
3c	The reaction meta alumini	$\begin{array}{rcrcr} \text{metals with dilute acids can be written as:} \\ \text{metal} &+ & \text{acid} & \longrightarrow & \text{salt} &+ & \text{hyd} \\ \text{aluminium} &+ & \text{hydrochloric acid} & \longrightarrow & \text{aluminium chloride} &+ & \text{hyd} \\ \hline 2Al &+ & 6HCl & \longrightarrow & 2AlCl_3 &+ & 3 \\ \hline \text{Metals can be arranged in order of reactivity by comparing the rates at which them} \end{array}$				ydro	gen			\odot		\odot								
	2A	+	• (5H(•	-	2AI	Cl ₃		+		3H	2					
4	Metals can Metal Reaction V	ZAI OTICI ZAICI3 etals can be arranged in order of reactivity by comparing the rates at which the Metal IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII					ey rea Jan Silver No Re With (act. Ploy	Platinum		3		\odot							
	Reaction V Water	/ith	Fast R With	eaction Water	1	S Fa	low	Reactio	n With	Wate	r m	,	No Re Wate	eaction	n with					
	Reaction V	/ith ds	Violent	Reaction Acids	on	Rea	act V	Vith Aci	ids	Slo Read	ow ction	No	React	tion W	ith Aci	ds				
	Metals can be used to produce soluble salts. Excess metal is added to the appropriation mixture is filtered and the filtrate evaporated to dryness.					riate	acid, t	he												
	1. <u>Re</u>	eaction v	vith Acid			porat	2.]	Filtratio	<u>on</u>				3. <u>Eva</u>	porat	ion					
5	stirring rod	lead por	wder sp t sulph aci	patula peaker uric d	mix filte funn	ture or el		ur v	filt pap preacted powde lead	er lead r sulphate	2	lead sol	Sulphate lution	e – Bur bur	evapor basi	ating n		33		::
	 metal rea When all will lie on 	 metal reacts with dilute acid metal reacts with dilute acid when all acid has been reacted, excess metal will lie on the bottom of the beaker filtrate in beaker is solution of salt you are making 					ion can be vaporatin	e returned t ig the water	to the											

					Natio	nal	Chom	ictry			100		n	Tra	fic L	ight
		JAB chem			Un	it 3.1	1c Red	OX			JAB chem		Lesso	Red	Amber	Green
6a 8a	Redu	iction Cu a c red	is a gain o J ²⁺ compounc luction re	of elect + l reacti actions	rons by a <i>read</i> 2e - ing to form a 1 s have electro	<i>ctant</i> in netal e ns <u>befo</u>	any chem 	ical reaction Cu an example o ow	n: of redu	ction		1		\odot	٢	:
6b 8b	<u>Oxid</u> •	<u>ation</u> i a m o xi	s a loss o netal elem dation re	f electr nent rea actions	ons by a <i>reac</i> Mg acting to form s have electro	tant in a com	any chemi → pound is a <u>r</u> the arrov	cal reaction: Mg ²⁺ n example of v	+ f oxida	2e ⁻ tion				\odot	٢	:
7	Ina	redox	reaction,	reduct	ion and oxida	tion tal	ke place at	the same tin	ne.					\odot	\bigcirc	\odot
	Ion-6 <u>0</u>	electro xidatio	on equation on Reaction	ons can on:	be combined	to pro	duce redo	x equations.								
		Ν	/lg				→	Mg^{2+}	-	⊦ 2	e⁻					
9	<u>R</u>	educti Ci	<u>on Reacti</u> U ²⁺	<u>on:</u> +	2e-			Cu						6		0
	<u>R</u>	edox R N	<u>Reaction</u> : /Ig	+	Cu ²⁺			Mg ²⁺	-	⊦ C	u					
		JAB			Natio	nal S	5 Chem	istry			JAB		uo	Tra	ffic L	ight
		chem		ι	Jnit 3.1d	Extr	action	of Meta	ls		chem		Less	Red	Amber	Green
10	Duri	ng the	extractio	on of m	etals, metal io	ons are	reduced f	orming meta	l atom	s.				$\overline{\mbox{\scriptsize ($)}}$	\odot	\odot
11a 12a	The e.g. s	least r silver, j	eactive m gold, plat	ietals a inum a	nd mercury silver (I) or 2Ag ₂ (y heati kide)	ng metals	silver 4Ag	alone + +	oxyg Oz	en 2			8		:
11b 12b	Meta mon Co ir	als wit oxide pper (2C on (III 2Fe	h mediun e.g. coppe II) oxide uO I) oxide	n react er, lead + +	ivity are obtai , tin, iron and carbon C carbon mon 3CO	ined by zinc oxide	v heating m → → →	copper 2Cu iron 4Fe	1nds w + + + +	ith carbor carbon d CO carbon d 3C(n or car ioxide 2 ioxide	bon		8		0
11c 12c	The e.g. j	most r potass	reactive m ium, sodi	netals r um, lith	nust be obtain nium, calcium aluminium c 2Al ₂ O	ned by , magno xide 3	molten ele esium and 	ectrolysis of r aluminium aluminium 4Al	metal o + +	compound oxyg 30	en 2			8		٢
13 14	Ele into	ctrolys o its el • a el	sis is the o ements u d.c. suppl ectrolysis	decom sing el y must s are to	position of an ectricity be used if the be identified	ionic c e produ	ompound acts of	Heat-resistant container —		Electricity Supply	electrode molter aluminiu oxide	s 1 1m		8		Û
15	Posi Nega	tive m ative n	etal ions on-metal	gain el ions lo	ectrons at the ose electrons a	negati at the p	ve electro ositive ele	de (reductio ctrode (oxid	n) lation)	e.g. Cu ²⁺ e.g. 2Cl	+ $2e^- \rightarrow$ → Cl_2 +	Cu 2e-		$\overline{\mbox{\scriptsize ($)}}$	\odot	\odot

	National 5 Chemistry]	uos	Tra	ffic L	ight
	chem Unit 3.1e Electrochemical Cells chem		Less	Red	Amber	Green
16	 Electrically conducting solutions containing ions are known as electrolytes. Movement of ions in the electrolyte completes the circuit 			$\overline{\mbox{\scriptsize ($)}}$:	\odot
17	 A simple cell can be made by placing two metals in an electrolyte. Electrons move through the voltmeter from the metal higher up the electrochemical series to the metal lower in the series Ions move in the electrolyte to balance up this movement of charge 	aper :d in olyte		8	:	☺
18	 Electricity can be produced in a cell by connecting two different metals in solutions of their metal ions. Electrons flow in the external circuit from the metal higher in the electrochemical series to the one lower in the electrochemical series. Electrons flow from Magnesium to copper in this circuit 	vith		\odot	:	
19 20 21	 Different pairs of metals produce different voltages. These voltages can be used to arrange the elements into an electrochemical series (p10 of data booklet) the further apart elements are in the electrochemical series, the greater the voltage produced when they are used to make an electrochemical cell. electrons flow in the external circuit from the species higher in the electrochemical series to the one lower in the electrochemical series. 	e eries		3	:	٢
22a 23a	For an electrochemical cell ion-electron equations can be written for: • the oxidation reaction • the reduction reaction • the overall redox react The direction of flow of electrons can also be worked out in an electrochemical cell. At Magnesium Electrode: (oxidation $Mg(s) \rightarrow Mg^{2+}(aq) + 2e$ $Mg^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$ Electrons leave Magnesium (on left) as magnesium atoms form magnesium ions Electrons travel through the wires and Voltmeter Electrons travel through wires from left to right	s) s)		8		©
22b 23b	Some electrochemical cells involve non-metals as one of their reactions: At Electrode A: Ag ⁺ (aq) + e ⁻ \rightarrow Ag(s) Electrode A solution containing Ag ⁺ ions Electrode B as I ⁻ Electrons leave Electrode B as I ⁻ Electrons travel through the Electrons travel through wires from right to left Solution Containing Ag ⁺ ions to form Ag ator Electrons travel through wires from right to left) nd ms				

	J	AB		N	ational 5 Ch	emistry		JAB	400	Tra	iffic L	ight
	cl	hem			Unit 3.2 Pla	astics		chem	Iaco	Red	Amber	Green
24 25 26	Plasti	cs are exar Polymer molecule Addition monome Nar mono polymer	nples of r s are long es called a polymer ers are joi ne omer mer risation	naterials g chain m monome risation is ined, form Small m The lon The pro	known as polymer olecules formed by rs. s the name given to ning a polymer. lolecules which joir g chain molecule m cess where monon	rs. y joining together a a chemical reaction Definition h together to form hade by the joining hers join together to	a large number on in which uns polymers up of monome to form polyme	of smal aturate	ll ·d	8	٢	0
27	The n	ame of the Monomer Polymer	addition ethe poly(e	polymer ene thene)	is related to the na styrene poly(styrene)	ame of the monom propene poly(propene)	er: chloroether poly(chloroeth	ne nene)		$\overline{\mathbf{S}}$	☺	\odot
28 29 30	The st repea	ructure of ting unit A repeat the comj From the <u>M</u> F	a polymo ing unit i plete poly e structur onomer: oropene	er can be s the sho mer cha re of a po $CH_3 H$ C=C H H H H H H H H	drawn given either rtest section of poly in (except for the e lymer, the monome $CH_3 H CH_4 + C = C + C = C + C = C + C = C + C = C + C = C + C = C + C = C + C = C + C = C + C +$	The structure of t ymer chain which, nd-groups) er or repeating unit $H_3 H$ = C H $H_3 H$ C - C - H	he monomer of if repeated, wo it can be drawn $\begin{pmatrix} CH_3H \\ \\ H \\ H \end{pmatrix}$ repeating unit	r the ould yie	ld	3		:

	National 5 Chemistry	.0/		on	Tra	ffic L	ight
H	chem Unit 3.3 Fertilisers	ch	em	Less	Red	Amber	Green
21	Growing plants require nutrients, including compounds containing nitrogen, ph	osphorus	or				
32	 fertilisers are substances which restore to the soil elements essential for 	healthy	plant		8		\odot
33	Ammonia and nitric acid are important compounds used to produce soluble, nit containing salts that can be used as fertilisers.	rogen-			8	:	0
34	Ammonia is a pungent, clear, colourless gas • ammonia dissolves in water to produce an alkaline solution • ammonium hydroxide solution is formed although the balance is more r ammonia than ions of ammonium and hydroxide ammonia + water → ammonium ion + hydroxid NH ₂ (ag) + H ₂ O(h) → NH ₄ +(ag) + OH ²	nolecule o le ion	of		8		0
35	Ammonia solutions react with acids to form soluble salts ammonia solution + acid \longrightarrow ammonium saltammonia solution + hydrochloric acid \longrightarrow ammonium chloride $NH_4OH_{(aq)}$ + $HCl_{(aq)}$ \longrightarrow $NH_4Cl_{(aq)}$	+ w e + w + H;	ater ater 2 0 (l)		8		:
36	The Haber Process is the industrial process where ammonia is made for production $N_{2(g)}$ + $3H_{2(g)}$ $\xrightarrow{\text{iron}}_{\text{catalyst}}$ $2NH_{3(g)}$	tion of fe	tiliser	S	3		0
37	 At low temperatures the forward reaction is too slow to be economical if the temperature is increased, the rate of reaction increases however as the temperature increases, the backward reaction becomes 100% ammonia is never produced as the rate of breakdown of ammonia equals the rate of formation of ammonia an iron catalyst is used to increase reaction rate 	increases a eventua	lly		8		©
38 39	The Ostwald process uses ammonia, oxygen and water to produce nitric acid. • ammonia is the starting material for the commercial production of nitric • a platinum catalyst is used in this process. $4NH_3 + 7O_2 \xrightarrow{\text{platinum}} 4NO_2 + 6H$ ammonia + oxygen \longrightarrow nitrogen dioxide + wa water Nitric acid	e acid. 20 ter			$\overline{\mathbf{i}}$		0

		National 5	Chemistry			u	Traf	fic Li	ight	
H	chem Un	it 3.4 Nucl	ear Chemis	try	chem	Lessc	Red	Amber	Green	
40	Radioactive decay involves char become more stable nuclei by g	nges in the nuclei aving out alpha, b	of atoms. Unstable eta or gamma radia	nuclei (radioisotopes) ation.	can		\odot		\odot	
41 44a 46a	 Alpha particles (α) are helium alpha particles have a n alpha particles have a d deflected by an electric stopped by piece of pap Alpha decay of ²¹⁰Po can be v 	nuclei nass number = 4 a ouble positive ch field towards the er and travel only vritten as:	and an atomic num arge as they have to e negatively charge y a few centimetre $^{210}_{84}$ Po \rightarrow	where $= 2$ ho electrons $\frac{4}{2}H$ d plate $\frac{206}{82}Pb + \frac{4}{2}H$	le le		\odot	٢	0	
42 44b 46b	 Beta particles (β) are electrons beta particles have a n beta particles have a n deflected by an electric stopped by thin sheet Beta decay of ⁹⁹Mo can be w 	ejected from a n hass number = 0 a egative charge c field towards a p of aluminium and ritten as:	ucleus and an atomic num positively charge p l travel over a metr $^{99}_{42}\text{Mo} \rightarrow$	ber = -1 late 0^{0} re in air -1^{6} $\frac{99}{43}$ TC + 0^{0}	5		:::	٢	Û	
43	 Gamma rays (γ) are electromage Gamma radiation is able They can be stopped by Gamma rays are not defined 	amma rays (γ) are electromagnetic waves emitted from within the nucleus of an atom. • Gamma radiation is able to travel great distances in air. • They can be stopped by barriers made of materials such as lead or concrete. • Gamma rays are not deflected by an electric field. • nuclear equations alpha, beta, protons and neutrons are written as: • Alpha particle Beta Particle • Proton Neutron								
45	In nuclear equations alpha, be Alpha particle 4 2 He			::	:	0				
47	Half-life is the time for half of th			$(\dot{\})$	\bigcirc	\odot				
48	The half-life of an isotope is a cc (compound form or element) or isotopes can be used to date ma	Image: Control of the second secon								
49	The half-life of an isotope can from a graph showing a deca • Find a halving of the o y-axis e.g. 100% to 50 • Measure the time tak halving to take place	be determined y curve. quantity on the 1% or 2g to 1g en for the on the x-axis	Bediact 14/4 (B)	10 19 20 25 Time (hours)	•		©	٢	0	
50	The quantity/proportion of radioisotope, half-life or time elapsed from the other variables:Calculate the half-life of the radioisotope if it takes 45 days for 2g of radioisotope to decay into 0.1g or the radioisotope.How long did it take for 80g of a radioisotope with a half-life of 17 days 0.625g of radioisotope?A radioisotope has a half-life of 3hours. How much of 64g of the radioisotope will remain after 15 hours?Mass (g)No of Half Lives 3.2Mass (g)Time Taken (days) 0A radioisotope will remain after 15 hours?Mass (g)No of Half Lives 1.6Mass (g)Time Taken (days) 0Time (hrs)Mass (g)Proportion06410.82105168121/20.156821241/160.242.5851241/160.150.625119 days152g1/327Radioisotopes have a range of uses in medicine and in industry.Radioisotopes have a range of uses in medicine and in industry.Radioisotopes have a range of uses in medicine and in industry.									
51 52	 Radioisotopes have a range of u Radioisotopes can be us Radioisotopes used mus Gamma radiatio Medicines with 			\odot		\odot				

	JAR	3		Na	tiona	150	Chemi	stry	7		JAB		son	Tra	ffic L	ight
	chen	ı	Uı	nit 3.	5c An	aly	tical N	/leth	ods		chem		Less	Red	Amber	Green
55	Titration point of a • a • a • a • t	is use a chem n indic rough ccurat o the few of t o col tre vo he accu	d to accurately ical reaction. cator changing titration is us to titration is us the titrations are majority of the v drops are ad the reactant in our change sh lumes within (urate titres acl	y deter g colour e d to v e then s ne titre ded on the bu ould be 0.2 cm ³	mine the r will sho vork out set up us volume e at a tin urette e achieve are cons are then	e volu ow wh the a ing e is ado ne to a ed by sidere avera	mes of so nen the er pproxima xactly the led at firs allow the the addit ed concor aged for u	nd-poi ate vol same st, thou most ion of dant i use in	n required to int has been r ume of the en chemicals an roughly mixe accurate read one drop fro (accurate) a calculation.	reach the reached. nd point nd quant d and the ding of th m the bu	e end- ities, en the l ne volu rette	last me		\odot	:	3
56	A standa	rd solu nade u mass ne solu ne solu ne bea ne funn ne star n the f he flas	ation is a solut p in a standard of a solid is mo d is fully disso ation in the be- ker is rinsed u nel is rinsed in ndard flask is f flask) with the sk is mixed tho	ion wit d flask, easured ilved in aker is sing de side ar filled up last fe oroughl	th an acct also kno d on a ba a beake transfer eionised nd out wi o to the r w drops ly before	urate wn a lance r with red ir water ith de nark of dei use.	Iy known s a volum h deionise nto a stan r from a v eionised v (the botte ionised w	ed wat dard f vash k vater i om of vater a	entration. flask. ter lask using a f oottle into the into the flask. the curved m dded using a	unnel flask eniscus o dropper	on the	line		3		0
57	Metals ic • S	ns in a olution Elem Ior Flame C	a sample can b ns of metals w ent Barium n Ba ²⁺ Colour green	e ident ill give Calciu Ca ²⁴ orange	hly before use. ntified using a flame test. re different colours when placed i num Copper Lithium Potassium a ²⁺ Cu ²⁺ Li ⁺ K ⁺ ge-red blue-green red lilac			ed into a flam ium Sodium Na ⁺ c yellow	e Strontiun Sr ²⁺ red	1			\odot	:	\odot	
58	Oxygen, 1 Name o Test fo	nydrog f Gas r Gas	gen and carbor Oxy Relights a G	n dioxio ygen lowing	de gases Splint	can b Bu	e identifi Hydroge rns with a	ed by: n a Pop	Carb Turns Li	oon Dioxi mewatei	de Milky	7		\odot	:	٢
59	Precipita	tion is	the reaction of	of two s	solutions	to fo	rm an ins	olubl	e salt called a	precipit	ate.			$\overline{\mbox{\scriptsize (i)}}$	\odot	\odot
60	Informat The form Pot	ion on ation Wr name assium odide	the solubility of a precipitat riting down the sof the reactants C	of com e can b eead trate	vo solutions to form an insoluble salt compounds can be used to predict when n be used to identify the presence of Swap the names over Potassium Lead Nitrate Iodide Diss so		ct when a pre ce of a partice Check p8 of solubility Potassium Nitrate is soluble ↓ Dissolved in solution	ecipitate alar ion. data book of product Lea Iodii is insol Precipit botto	for s d de luble ate on om	rm.		3	:	٢		

	Given a description of an experin to the experimental method can e.g. improving method of measu	nental procedure and/or experi- be suggested and justified. ring E _h	mental results, an improvement			
66	Water must be stirred thoroughly to ensure even temperature across water Metal beakers should be used instead of glass beakers as they conduct heat better	Beaker must be clamped into the flame instead of using a tripod over the spirit burner Air could be replaced by oxygen to reduce incomplete combustion	Heat loss can be reduced by use of a draught shield	8	:	0
	e.g.					